
Package index
-
as.mgh()
- Create an object structured like an MGH object
-
barnard.rubin()
- Pooled degrees of freedom calculation
-
build_supersubject()
- Build "supersubject" by stacking all vertex data in one large file-backed matrix with dimensions n_subjects x n_vertices.
-
check_pheno_obj()
- Check that object exists in the global environment
-
compute_clusters()
- Compute significant clusters of vertices
-
estimate_fwhm()
- Estimate full-width half maximum (FWHM)
-
fbm2mgh()
- Save file backed matrix (FBM) to MGH file
-
fbm_col_has_0()
- Check if all row elements are 0 in FBM
-
get_terms()
- Unpack
lme4
formula
-
hemi_vw_lmm()
- Run vertex-wise linear mixed model in one hemisphere using
lme4::lmer()
-
imp2list()
- Convert imputation object to a list of dataframes
-
list.dirs.till()
- List sub-directories till depth
n
-
load.mgh()
- Load an MGH file into memory
-
load_pheno_file()
- Load "phenotype" file into R based on its extension
-
make_chunk_sequence()
- Define chunks of vertices for analyses
-
mask_cortex()
- Clean out vertices that are not on the cortex
-
pretty_message()
- Print pretty messages to console
-
run_vw_lmm()
- Run vertex-wise linear mixed model using
lme4::lmer()
-
save.mgh()
- Save an MGH file from memory
-
simulate_dataset()
- Simulate a dataset including phenotype and FreeSurfer data
-
simulate_freesurfer_data()
- Simulate FreeSurfer data
-
simulate_long_pheno_data()
- Simulate phenotype data
-
single_lmm()
- Run a single
lme4::lmer
model and extract stats
-
vw_message()
- Print message to console if verbose = TRUE
-
vw_pool()
- Pool
lme4::lmer
model output across imputed datasets