
Package index
-
as.mgh() - Create an object structured like an MGH object
-
barnard.rubin() - Pooled degrees of freedom calculation
-
build_supersubject() - Build "supersubject" by stacking all vertex data in one large file-backed matrix with dimensions n_subjects x n_vertices.
-
check_pheno_obj() - Check that object exists in the global environment
-
compute_clusters() - Compute significant clusters of vertices
-
convert_to_mgh() - Convert statistical result FBMs to FreeSurfer
.mghformat -
create_cortex_mask() - @title Save logical cortex mask from FreeSurfer cortex.label files
-
estimate_fwhm() - Estimate full-width half maximum (FWHM)
-
fbm2mgh() - Save file backed matrix (FBM) to MGH file
-
fbm_col_has_0() - Check if all row elements are 0 in FBM
-
get_terms() - Unpack
lme4formula -
imp2list() - Convert imputation object to a list of dataframes
-
list.dirs.till() - List sub-directories till depth
n -
load.mgh() - Load an MGH file into memory
-
load_pheno_file() - Load "phenotype" file into R based on its extension
-
locate_roi() - Locate vertices belonging to specific cortical ROIs
-
make_chunk_sequence() - Define chunks of vertices for analyses
-
mask_cortex() - Clean out vertices that are not on the cortex
-
move_result_files() - Move key result files from one directory to another (for sharing and visualization)
-
plot_vw_map() - Plot vertex-wise coefficient maps on a 3D cortical surface
-
pretty_message() - Print pretty messages to console
-
run_vw_lmm() - Run vertex-wise linear mixed model using
lme4::lmer() -
run_vw_meta() - Vertex-wise Random-Effects Meta-Analysis Across Studies
-
save.mgh() - Save an MGH file from memory
-
simulate_dataset() - Simulate a longitudinal brain surface dataset with associated phenotype data
-
simulate_freesurfer_data() - Simulate longitudinal FreeSurfer vertex-wise data
-
simulate_long_pheno_data() - Simulate (longitudinal) phenotype data
-
single_lmm() - Run a single linear mixed model and extract statistics
-
subset_supersubject() - Subset an existing supersubject matrix by matching folder IDs
-
vw_message() - Print message to console if verbose = TRUE
-
vw_pool() - Pool
lme4::lmermodel output across imputed datasets