Skip to contents

All functions

as.mgh()
Create an object structured like an MGH object
barnard.rubin()
Pooled degrees of freedom calculation
build_supersubject()
Build "supersubject" by stacking all vertex data in one large file-backed matrix with dimensions n_subjects x n_vertices.
check_pheno_obj()
Check that object exists in the global environment
compute_clusters()
Compute significant clusters of vertices
estimate_fwhm()
Estimate full-width half maximum (FWHM)
fbm2mgh()
Save file backed matrix (FBM) to MGH file
fbm_col_has_0()
Check if all row elements are 0 in FBM
get_terms()
Unpack lme4 formula
hemi_vw_lmm()
Run vertex-wise linear mixed model in one hemisphere using lme4::lmer()
imp2list()
Convert imputation object to a list of dataframes
list.dirs.till()
List sub-directories till depth n
load.mgh()
Load an MGH file into memory
load_pheno_file()
Load "phenotype" file into R based on its extension
make_chunk_sequence()
Define chunks of vertices for analyses
mask_cortex()
Clean out vertices that are not on the cortex
pretty_message()
Print pretty messages to console
run_vw_lmm()
Run vertex-wise linear mixed model using lme4::lmer()
save.mgh()
Save an MGH file from memory
simulate_dataset()
Simulate a dataset including phenotype and FreeSurfer data
simulate_freesurfer_data()
Simulate FreeSurfer data
simulate_long_pheno_data()
Simulate phenotype data
single_lmm()
Run a single lme4::lmer model and extract stats
vw_message()
Print message to console if verbose = TRUE
vw_pool()
Pool lme4::lmer model output across imputed datasets