
Run vertex-wise linear mixed model in one hemisphere using lme4::lmer()
Source: R/run_vw_lmm.R
hemi_vw_lmm.Rd
It runs the single_lmm
function across vertices in a single hemisphere.
Usage
hemi_vw_lmm(
formula,
data_list,
subj_dir,
outp_dir = NULL,
FS_HOME = "",
folder_id = "folder_id",
hemi,
measure = gsub("vw_", "", all.vars(formula)[1]),
fwhm = 10,
target = "fsaverage",
mcz_thr = 30,
cwp_thr = 0.025,
seed = 3108,
apply_cortical_mask = TRUE,
save_ss = TRUE,
model = "lme4::lmer",
cluster,
verbose = TRUE
)
Arguments
- formula
: a string or model formula object specifying a LME model, e.g.
vw_thickness ~ sex * age + site + (1|id)
.- data_list
: a list of dataframes containing phenotype information (generated by
imp2list
)- subj_dir
: a string containing the path to the neuroimaging (FreeSurfer pre-processed) data, this expects a verywise structure.
- outp_dir
: output path, where do you want results to be stored. If none is provided by the user, a "results" sub-directory will created inside
subj_dir
.- FS_HOME
: FreeSurfer directory, i.e.
$FREESURFER_HOME
.- folder_id
: (default = "folder_id") the name of the column in pheno that contains the directory names of the input neuroimaging data (e.g. "sub-10_ses-T1").
- hemi
: (default = "both") hemispheres to run.
- measure
: (default =
gsub("vw_", "", all.vars(formula)[1])
) vertex-wise measure this should be the same as specified in formula- fwhm
: (default = 10) full-width half maximum value
- target
: (default = "fsaverage") template on which to register vertex-wise data.
- mcz_thr
: (default = 0.001) numeric value for the Monte Carlo simulation threshold. Any of the following are accepted (equivalent values separate by `/`): * 13 / 1.3 / 0.05, * 20 / 2.0 / 0.01, . * 23 / 2.3 / 0.005, * 30 / 3.0 / 0.001, \* default * 33 / 3.3 / 0.0005, * 40 / 4.0 / 0.0001.
- cwp_thr
: (default = 0.025, when both hemispheres are ran, else 0.05) the cluster-wise p-value threshold on top of all corrections.
- seed
: (default = 3108) random seed.
- apply_cortical_mask
: (default = TRUE) remove vertices that are not on the cortex.
- save_ss
: (default = TRUE) save the super-subject matrix as an rds file for quicker processing in the future.
- model
: (default =
"lme4::lmer"
) # "stats::lm"- cluster
: the parallel cluster
- verbose
: (default = TRUE)