
writing code
for others

Some disclamers

► My credentials

► Reproducibility { rant time }

► Note: this talk
o will be (mostly) R-based
o inspired by a couple of talks from this lady ⇢

► Advertisement time: join the EMC coding café

POV: you look at code
you wrote last year

https://codimd.carpentries.org/2ZJGnriHRUiJBFUa-CGDrg?view

But enough about me…
You need to repeat an operation a few times (3-10). Chose a character:

q Copy-paste athlete
q For loop master
q Apply family mobster
q Vector-ciraptor

How confident are you writing a function:
q A what now?
q I can try if you really need me to
q definitely
q My functions write their own functions, b*tch

code 7217 1669

readability

The holy trinity of code quality

flexibility

stability
aka reproducible

aka easy to understand

aka cheap to modify

The 10 commandments
of good code

DO NOT REPEAT YOURSELF (DRY)

readability stabilityflexibility

1

a. use variablesDon’t do this

DRY level: beginner

readability stabilityflexibility

2

b. use a for loopDon’t do this

1

flexibility

c. use a function

Unlock vectorization! →

DRY level: intermediate

readability

2

Don’t do this

stability

1

DRY level: advanced2

d. add arguments to your functionDon’t do this

flexibilityreadability stability

1

DRY level: brat2

Don’t do this

flexibilityreadability stability

1

comment. your. code.

readability stabilityflexibility

2
Explain yourself, what seems obvious now may become confusing
once you forgot the context (…for me: pretty darn soon)

Don’t expect anyone to read the
comments

3

Good code should “read like English”
⇢ Pick the right names your functions and variables
⇢ (in R) use piping (%>% , |>)

The code should explain what, the comment should explain why

“there are only
two hard things

in Computer
Science: cache

invalidation and
naming things.”

Use “chapters” and “paragraphs”

readability stabilityflexibility

4
Avoid very long scripts (with 500+ lines)
⇢ Divide your pipeline into “chapter” files
⇢ … number them (when it makes sense)
⇢ Tip: access variables or functions

defined inside other files:

source(“0-functions.R”)

from definitions.backend import *

Divide your script into sections using

 # [section title] ------------------------

A few small
functions >
one monster

function

You have to break it (before you can fix it) 5

flexibilityreadability stability

Repeat after me: errors should never pass silently .
In the face of ambiguity (which will probably be there), don’t guess
⇢ Check your user input (…often: classes and types)

Don’t comment
& uncomment
code, especially
if you need to
do it in multiple
places!

⇢ Throw errors and/or catch them using tryCatch() .

BUT… beware of onion functions

Flat is better than nested6

Use control-flow alternatives:

Not all ifs need an else…
⇢ Use quick stop() and return() (“guard clauses”)

e.g. stopifnot(is.numeric(x) || is.logical(x))

readability stabilityflexibility

Less
indentation

> more
indentation.

Code independence7

flexibilityreadability stability

Avoid adding dependencies
(unless you really need them)

Don’t do this

Good practice::contextualize functions!

depend on
other packages,

which

Packages:
are living things,
they change all

the time

Version control (a): use environments8

A programming environment = “the infrastructure (including the
compiler and the tools) where the code can run”

Basically: the version of R and the packages

Environment managers: conda , venv , pyenv.

From R:

flexibilityreadability stability

…and, sometimes, the OS

Version control (b): use git9

flexibilityreadability stability

[note] Upcoming talk:
Introduction to git

and github
PhD meeting

5 Feb 2024,14:00

Version control (a & b): use projects

I often see scripts starting like this:

Use a project instead…

RStudio makes this very easy! [demo]

Once you create a project, it’s much easier to manage your files,
your dependencies (with renv), track code versions (with git) and
(eventually) give it somebody else.

flexibilityreadability stability

8

9

Peer review, baby 😎10

§As an author, ask people to review your code!

⇢ Best medicine against code blindness

⇢ If you can (and you can) have at least one co-author
review the code

§As a reviewer, ask to see the code : that’s the real
scientific product

flexibilityreadability stability

In summary…
1 Don’t repeat yourself: use variables, functions and loops

#comment your code
Pick names so you can read_code_like(“English”)
Keep your files (and functions) short & organised
Throw and catch errors
Avoid (a lot of) indentation
Avoid package dependencies
Use environments
Use git
Peer review the code

flexibilityreadability stability

2
3
4
5
6
7
8
9

10

control those versions

Bonus: some extra don’ts
✗ forget to set.seed()

✗ refer to columns in a data frame using their numbers
✗ make functions dependent on global enviroment variables

Thanks for listening!

(happy_coding_everyone;)

